

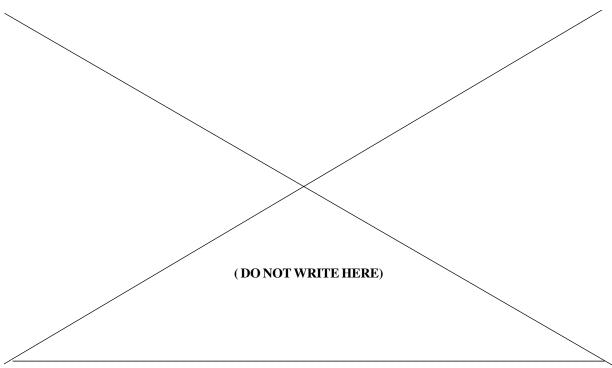
QUESTION BOOKLET - 2016

Subjects: Paper I: Physics & Chemistry

Question Booklet Version		I	Roll N	lo.			Question Booklet Sr. No.
11		Answ	er Sh	eet No).	7	
(Write this number on your Answer Sheet)							(Write this number on your Answer Sheet)

Duration: 1 Hour 30 Minutes Total Marks: 100

This is to certify that, the entries of Roll Number and Answer Sheet Number have been correctly written and verified.


Candidate's Signature

Invigilator's Signature

Instructions to Candidates

- 1. This question booklet contains 100 Objective Type Questions (Single Best Response Type) in the subjects of Physics (50) and Chemistry (50).
- 2. The question paper and OMR (Optical Mark Reader) Answer Sheets are issued to examinees separately at the beginning of the examination session.
- 3. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 4. Candidate should carefully read the instructions printed on the Question Booklet and Answer Sheet and make the correct entries on the Answer Sheet. As Answer Sheets are designed to suit the OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark appropriate entries/answers correctly. Special care should be taken to fill QUESTION BOOKLET VERSION, SERIAL No. and Roll No. accurately. The correctness of entries has to be cross-checked by the invigilators. The candidate must sign on the Answer Sheet and Question Booklet.
- 5. Read each question carefully.
- 6. Determine the correct answer from out of the four available options given for each question.
- 7. Fill the appropriate circle completely like this •, for answering the particular question, with Black ink ball point pen only, in the OMR Answer Sheet.
- 8. Each answer with correct response shall be awarded **one** (1) **mark**. There is **no Negative Marking**. If the examinee has marked two or more answers or has done scratching and overwriting in the Answer Sheet in response to any question, or has marked the circles inappropriately e.g. half circle, dot, tick mark, cross etc, mark/s shall NOT be awarded for such answer/s, as these may not be read by the scanner. Answer sheet of each candidate will be evaluated by computerized scanning method only (Optical Mark Reader) and there will not be any manual checking during evaluation or verification.
- 9. Use of whitener or any other material to erase/hide the circle once filled is not permitted. Avoid overwriting and/or striking of answers once marked.
- 10. Rough work should be done only on the blank space provided in the Question Booklet. **Rough work should not be done on the Answer Sheet.**
- 11. The required mathematical tables (Log etc.) are provided within the Question Booklet.
- 12. Immediately after the prescribed examination time is over, the Question Booklet and Answer sheet are to be returned to the Invigilator. Confirm that both the Candidate and Invigilator have signed on question booklet and answer sheet.
- 13. No candidate is allowed to leave the examination hall till the examination session is over.

SPACE FOR ROUGH WORK

PHYSICS

1. For a gas $\frac{R}{C_v}$ = 0.4, where 'R' is the universal gas constant and ' C_v ' is molar specific heat

at constant volume. The gas is made up of molecules which are

A) rigid diatomic

B) monoatomic

C) non-rigid diatomic

- D) polyatomic
- 2. In vertical circular motion, the ratio of kinetic energy of a particle at highest point to that at lowest point is
 - A) 5
- B) 2
- C) 0.5
- D) 0.2
- 3. Two wires having same length and material are stretched by same force. Their diameters are in the ratio 1:3. The ratio of strain energy per unit volume for these two wires (smaller to larger diameter) when stretched is
 - A) 3:1
- B) 9:1
- C) 27:1
- D) 81:1
- 4. A ring and a disc roll on the horizontal surface without slipping with same linear velocity. If both have same mass and total kinetic energy of the ring is 4 J then total kinetic energy of the disc is
 - A) 3 J
- B) 4 J
- C) 5 J
- D) 6 J
- 5. When the observer moves towards the stationary source with velocity, 'V₁', the apparent frequency of emitted note is 'F₁'. When the observer moves away from the source with velocity 'V₁', the apparent frequency is 'F₂'. If 'V' is the velocity of sound in air and

$$\frac{F_1}{F_2} = 2$$
 then $\frac{V}{V_1} = ?$

- A) 2
- B) 3
- C) 4

- D) 5
- 6. Wire having tension 225 N produces six beats per second when it is tuned with a fork. When tension changes to 256 N, it is tuned with the same fork, the number of beats remain unchanged. The frequency of the fork will be
 - A) 186 Hz
- B) 225 Hz
- C) 256 Hz
- D) 280 Hz
- 7. Assuming the expression for the pressure exerted by the gas on the walls of the container, it can be shown that pressure is
 - A) $\left[\frac{1}{3}\right]^{rd}$ kinetic energy per unit volume of a gas
 - B) $\left[\frac{2}{3}\right]^{\text{rd}}$ kinetic energy per unit volume of a gas
 - C) $\left[\frac{3}{4}\right]^{th}$ kinetic energy per unit volume of a gas
 - D) $\frac{3}{2}$ × kinetic energy per unit volume of a gas

8. A mass 'm₁' connected to a horizontal spring performs S.H.M. with amplitude 'A'. While mass 'm₁' is passing through mean position another mass 'm₂' is placed on it so that both the

masses move together with amplitude 'A₁'. The ratio of $\frac{A_1}{\Lambda}$ is $(m_2 < m_1)$

- A) $\left[\frac{m_1}{m_1 + m_2}\right]^{\frac{1}{2}}$ B) $\left[\frac{m_1 + m_2}{m_1}\right]^{\frac{1}{2}}$ C) $\left[\frac{m_2}{m_1 + m_2}\right]^{\frac{1}{2}}$ D) $\left[\frac{m_1 + m_2}{m_2}\right]^{\frac{1}{2}}$
- 9. A particle moves along a circle of radius 'r' with constant tangential acceleration. If the velocity of the particle is 'v' at the end of second revolution, after the revolution has started then the tangential acceleration is
 - A) $\frac{v^2}{8\pi r}$ B) $\frac{v^2}{6\pi r}$ C) $\frac{v^2}{4\pi r}$ D) $\frac{v^2}{2\pi r}$

- 10. Two strings A and B of same material are stretched by same tension. The radius of the string A is double the radius of string B. Transverse wave travels on string A with speed ' V_A ' and on string B with speed ' V_B '. The ratio $\frac{V_A}{V_B}$ is

- 11. The bob of a simple pendulum performs S.H.M. with period 'T' in air and with period 'T₁' in water. Relation between 'T' and 'T₁' is (neglect friction due to water, density of the material of the bob is = $\frac{9}{8} \times 10^3$ kg/m³, density of water = 1 $\frac{g}{cc}$)
 - A) $T_1 = 3 T$ B) $T_1 = 2 T$ C) $T_1 = T$

- D) $T_1 = \frac{T}{2}$
- 12. In a capillary tube of radius 'R', a straight thin metal wire of radius 'r' (R > r) is inserted symmetrically and one end of the combination is dipped vertically in water such that the lower end of the combination is at same level. The rise of water in the capillary tube is [T = surface tension of water, ρ = density of water, g = gravitational acceleration]
 - A) $\frac{T}{(R+r)\rho g}$ B) $\frac{R\rho g}{2T}$ C) $\frac{2T}{(R-r)\rho g}$ D) $\frac{(R-r)\rho g}{T}$

- 13. When open pipe is closed from one end then third overtone of closed pipe is higher in frequency by 150 Hz than second overtone of open pipe. The fundamental frequency of open end pipe will be
 - A) 75 Hz
- B) 150 Hz
- C) 225 Hz
- D) 300 Hz
- 14. A disc of radius 'R' and thickness $\frac{R}{6}$ has moment of inertia 'I' about an axis passing through its centre and perpendicular to its plane. Disc is melted and recast into a solid sphere. The moment of inertia of a sphere about its diameter is
 - A) $\frac{1}{5}$
- B) $\frac{1}{6}$
- D) $\frac{1}{64}$

- 15. Let a steel bar of length 'l', breadth 'b' and depth 'd' be loaded at the centre by a load 'W'. Then the sag of bending of beam is (Y = Young's modulus of material of steel)

 - A) $\frac{Wl^3}{2 \text{ bd}^3 \text{Y}}$ B) $\frac{Wl^3}{4 \text{ bd}^3 \text{Y}}$ C) $\frac{Wl^2}{2 \text{ bd}^3 \text{Y}}$ D) $\frac{Wl^3}{4 \text{ bd}^2 \text{Y}}$
- 16. Which of the following quantity does **NOT** change due to damping of oscillations?
 - A) Angular frequency

B) Time period

C) Initial phase

- D) Amplitude
- 17. If the end correction of an open pipe is 0.8 cm then the inner radius of that pipe will be
- A) $\frac{1}{3}$ cm B) $\frac{2}{3}$ cm C) $\frac{3}{2}$ cm
- D) 0.2 cm
- 18. A progressive wave is represented by $y = 12 \sin(5t 4x)$ cm. On this wave, how far away are the two points having phase difference of 90°?
 - A) $\frac{\pi}{2}$ cm B) $\frac{\pi}{4}$ cm C) $\frac{\pi}{8}$ cm
- D) $\frac{\pi}{16}$ cm
- 19. Two particles of masses 'm' and '9m' are separated by a distance 'r'. At a point on the line joining them the gravitational field is zero. The gravitational potential at that point is (G = Universal constant of gravitation)
 - A) $-\frac{4Gm}{r}$

- B) $-\frac{8 \text{Gm}}{r}$ C) $-\frac{16 \text{Gm}}{r}$ D) $-\frac{32 \text{Gm}}{r}$
- 20. A black rectangular surface of area 'A' emits energy 'E' per second at 27°C. If length and breadth are reduced to $\frac{1}{3}^{rd}$ of initial value and temperature is raised to 327°C then energy emitted per second becomes
- B) $\frac{7E}{g}$ C) $\frac{10E}{g}$ D) $\frac{16E}{g}$
- 21. A liquid drop having surface energy 'E' is spread into 512 droplets of same size. The final surface energy of the droplets is
 - A) 2E
- C) 8E
- D) 12E
- 22. Let 'M' be the mass and 'L' be the length of a thin uniform rod. In first case, axis of rotation is passing through centre and perpendicular to the length of the rod. In second case axis of rotation is passing through one end and perpendicular to the length of the rod. The ratio of radius of gyration in first case to second case is
 - A) 1
- B) $\frac{1}{2}$
- C) $\frac{1}{4}$
- D) $\frac{1}{0}$
- 23. A simple pendulum of length 'l' has maximum angular displacement ' θ '. The maximum kinetic energy of the bob of mass 'm' is

(g = acceleration due to gravity)

A) $mgl(1 + cos \theta)$

B) $mgl(1 + cos^2\theta)$

C) $mgl(1-\cos\theta)$

D) $mgl(\cos\theta - 1)$

- 24. Angular speed of hour hand of a clock in degree per second is
- A) $\frac{1}{30}$ B) $\frac{1}{60}$ C) $\frac{1}{120}$
- 25. The value of gravitational acceleration 'g' at a height 'h' above the earth's surface is $\frac{g}{4}$ then (R = radius of earth)
 - A) h = R
- B) $h = \frac{R}{2}$ C) $h = \frac{R}{3}$ D) $h = \frac{R}{4}$
- 26. In potentiometer experiment, null point is obtained at a particular point for a cell on potentiometer wire x cm long. If the length of the potentiometer wire is increased without changing the cell, the balancing length will (Driving source is not changed)
 - A) increase
- B) decrease
- C) not change
- D) becomes zero
- 27. An iron rod is placed parallel to magnetic field of intensity 2000 $\,\mathrm{A/m}$. The magnetic flux through the rod is 6×10^{-4} Wb and its cross-sectional area is 3 cm^2 . The magnetic permeability of the rod in $\frac{\text{Wb}}{\text{A} - \text{m}}$ is A) 10^{-1} B) 10^{-2} C) 10^{-3} D) 10^{-4}

- 28. Alternating current of peak value $\left(\frac{2}{\pi}\right)$ ampere flows through the primary coil of the transformer. The coefficient of mutual inductance between primary and secondary coil is 1 henry. The peak e.m.f. induced in secondary coil is (Frequency of a.c. = 50 Hz)
 - A) 100 V
- B) 200 V
- C) 300 V
- D) 400 V
- 29. An electron of mass 'm' has de-Broglie wavelength ' λ ' when accelerated through potential difference 'V'. When proton of mass 'M', is accelerated through potential difference '9V', the de-Broglie wavelength associated with it will be (Assume that wavelength is determined at low voltage)
 - A) $\frac{\lambda}{3}\sqrt{\frac{M}{m}}$ B) $\frac{\lambda}{3}\cdot\frac{M}{m}$ C) $\frac{\lambda}{3}\sqrt{\frac{m}{M}}$ D) $\frac{\lambda}{3}\cdot\frac{m}{M}$

- 30. Interference fringes are produced on a screen by using two light sources of intensities 'I' and
 - '91'. The phase difference between the beams is $\frac{\pi}{2}$ at point P and π at point Q on the screen. The difference between the resultant intensities at point P and Q is
 - A) 2 I
- B) 4 I
- C) 6 I
- D) 8 I
- 31. Three parallel plate air capacitors are connected in parallel. Each capacitor has plate area $\frac{1}{3}$ and the separation between the plates is 'd', '2d' and '3d' respectively. The equivalent capacity of combination is (ϵ_0 = absolute permittivity of free space) A) $\frac{7\epsilon_0 A}{18d}$ B) $\frac{11\epsilon_0 A}{18d}$ C) $\frac{13\epsilon_0 A}{18d}$ D)

			,		
32.	In an oscillator, for s			erion is $A\beta$ equal to $(A =$	· voltage
	A) zero	B) $\frac{1}{2}$	C) 1	D) 2	
33.	_	wavelength is deci	reased so that emitted	ngth is incident on a photo d photoelectrons are mov	
	A) increase	11 01		D) become exact	tly half

34. A ray of light travelling through rarer medium is incident at very small angle 'i' on a glass slab and after refraction its velocity is reduced by 20%. The angle of deviation is

35. The maximum frequency of transmitted radio waves above which the radio waves are no longer reflected back by ionosphere is _____ (N = maximum electron density of ionosphere, g = acceleration due to gravity)

A) gN

B) gN^2

C) $g\sqrt{N}$

D) g^2N^2

36. In Bohr's theory of Hydrogen atom, the electron jumps from higher orbit 'n' to lower orbit 'p'. The wavelength will be minimum for the transition

A) n = 5 to p = 4 B) n = 4 to p = 3 C) n = 3 to p = 2

D) n = 2 to p = 1

37. Two identical parallel plate air capacitors are connected in series to a battery of e.m.f. 'V'. If one of the capacitor is completely filled with dielectric material of constant 'K', then potential difference of the other capacitor will become

38. The LC parallel resonant circuit

A) has a very high impedance

B) has a very high current

C) acts as resistance of very low value D) has zero impedance

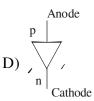
39. A galvanometer of resistance 30Ω is connected to a battery of emf 2V with 1970Ω resistance in series. A full scale deflection of 20 divisions is obtained in the galvanometer. To reduce the deflection to 10 divisions, the resistance in series required is

A) 4030 Ω

B) $4000\,\Omega$

C) $3970\,\Omega$

D) 2000Ω


40. Two coherent sources 'P' and 'Q' produce interference at point 'A' on the screen where there is a dark band which is formed between 4th bright band and 5th bright band. Wavelength of light used is 6000 Å. The path difference between PA and QA is

A) 1.4×10^{-4} cm B) 2.7×10^{-4} cm C) 4.5×10^{-4} cm D) 6.2×10^{-4} cm

41. The schematic symbol of light emitting diode is (LED)

SPACE FOR ROUGH WORK

A) W

A) 0.3

42. The amount of work done in increasing the voltage across the plates of capacitor from 5V to

43. Magnetic flux passing through a coil is initially 4×10^{-4} Wb. It reduces to 10% of its original value in 't' second. If the e.m.f. induced is 0.72 mV then 't' in second is

C) 0.5

C) 1.25 W

10V is 'W'. The work done in increasing it from 10V to 15V will be

B) 0.6 W

B) 0.4

D) 1.67 W

D) 0.6

44.	Resolving power of telescope increases		.1 . 01: 1 . :	
	A) wavelength of light decreasesC) focal length of eye-piece increases		gth of light increases gth of eye-piece decrea	ises
45.	When light of wavelength ' λ ' is incident 'V'. When light of wavelength ' 3λ ' is i	ncident on sai		
	$\frac{\mathbf{v}}{6}$. Threshold wavelength for the surface	ce is		
	$\frac{V'}{6}$. Threshold wavelength for the surface A) 2λ B) 3λ	C) 4λ	D) 5λ	
46.	From Brewster's law, except for polished A) depends on wavelength and is differ B) independent of wavelength and is d. C) independent of wavelength and is same D) depends on wavelength and is same	d metallic surf rent for differe ifferent for dif ame for differe	ent colours ferent colours ent colours	gle
47.	Two particles X and Y having equal chardifference enter a region of uniform magnand ' r_2 ' respectively. The ratio of the magnature r_2 and r_2 r_3 r_4 r_5 r_6 r_7	netic field and ass of X to that	describe a circular path of Y is	
48.	 When an electron in Hydrogen atom revo A) does not radiate light though its velo B) does not radiate light and velocity re C) radiates light but its velocity is unch D) radiates light with the change of energy 	ocity changes emains unchar nanged		
49.	The magnetic field (B) inside a long sole current 'I' when iron core is kept in it is (μ_0 =	_		
	A) μ_0 nI $(1-\chi)$ B) μ_0 nI χ	C) $\mu_0 nI^2 (1)$	$(1 + \chi)$ D) μ_0 nI (1	+χ)
50.	In balanced metre bridge, the resistance 'X' is connected in left gap and 6Ω in rig Find the current drawn from the battery (A) 1 A B) 1.5 A	ght gap, null po	oint divides the wire in	
	SPACE FOR	ROUGH WOR	K	

CHEMISTRY

51.	If 'n' represents total number of optical iso	omers of the compou	nd is	a compound, the possible
	A) 2n	B) n^2	C) 2 ⁿ	D) $2n + 2$
52.	The equation that rep	oresents van't Hoff g	eneral solution equation	on is
	A) $\pi = \frac{n}{V} RT$	B) $\pi = nRT$	C) $\pi = \frac{V}{n}RT$	D) $\pi = nVRT$
53.	Which is the most sta			
	A) Octahedral sulp	hur	B) Monoclinic sulphi	ur
	C) Plastic sulphur		D) Colloidal sulphur	
54.	B) It can not be rer	ome soft on heating u moulded r or branched chain p	inder pressure	
55.	-	•	equired to deposit 10 (molar mass of calcium C) 0.25 F	g of calcium from molten n = 40 g mol ⁻¹) D) 2 F
56	Name the reagent that	,	,	,
• • • • • • • • • • • • • • • • • • • •	A) Carbon		B) Sodium cyanide	
	C) Carbon monoxi	de	D) Iodine	
57.	Which of the following	ing is an analgesic?		
	A) Ofloxacin		B) Penicillin	
	C) Aminoglycoside	es	D) Paracetamol	
58.	The compound which treated with sodium		•	bromide and ethyl bromide
	A) Butane	B) Octane	C) Hexane	D) Ethane
59.	What is the general n with sulphur?	nolecular formula of	the products obtained of	on heating lanthanoids (Ln)
	A) LnS	B) LnS ₃	C) Ln_3S_2	D) Ln_2S_3
60.	Butylated hydroxy ar	nisole is		
	A) an anti oxidant		B) cleansing agent	
	C) disinfectant		D) an antihistamine	
61.	In the cell represente		$\left \left Ag^{+}_{(1M)}\right Ag_{(s)}, \text{ the } \right $	reducing agent is
	A) Pb	B) Pb ²⁺	C) Ag	D) Ag ⁺
62.	Which metal crystall	_		
	A) Polonium	B) Copper	C) Nickel	D) Iron
		SPACE FOR	ROUGH WORK	

63. The amine 'A' when treated with nitrous acid gives yellow oily substance. The amine A is

		triethylamine aniline			trimethylamine methylphenylamir	ne	
64	,		s NOT form acidic o				
0			B) Phosphorus			D)	Barium
65.	Whi		•			of gro	oups attached to chiral
		on atom is	<i>g.</i> :		r i i	0	
	A)	$CONH_2 > COC$	$CH_3 > CH_2OH > CH_3$	Ю			
			$CH_3 > CHO > CH_2O$				
		5	$H_2 > CHO > CH_2O$				
		_	$H > COCH_3 > CON$	Н2			
66.		etproof helmets a		<i>C</i>)	Claustal	D)	TL: -11
		Lexan	B) Saran		Glyptal	D)	Thiokol
67.			ed by Mond Process		AT' 1 1	D)	7 '
	,		, 11		Nickel		Zinc
68.	-		er when treated with		• •	_	
	,	1 10	e and methyl iodide l and methyl alcohol	,	1 10		•
60		1 11	•		1 10	iiu iii	ictifyi aiconoi
09.			unit cell, what is the		•		c. 1 3
	A)	$\frac{4}{3}\pi r^3$	B) $\frac{8}{3}\pi r^3$	C)	$\frac{16}{3}\pi r^3$	D)	$\frac{64 \mathrm{r}^3}{3\sqrt{3}}$
70.	Gluc	cose on oxidation v	with bromine water yie	elds	gluconic acid. This r	eactio	on confirms presence of
			s linked in straight cl		l		
		aldehyde group	olic group in glucos	e			
			ic group in glucose				
71.	How	is sodium chron	nate converted into so	odiu	m dichromate in the	mar	nufacture of potassium
		romate from chro			• 1		
		By the action of By roasting with	concentrated sulphu	iric	acid		
			sodium hydroxide				
	D)	By the action of	lime stone				
72.		•	as negative electrod				
		Zinc Ammonium chl	amida		Graphite Management diagric	ام	
72					Manganese dioxid		itua can
13.		Nitroethane	which on treatment		Triethylamine	ues I	nuogen.
		Diethylamine			Ethylamine		
			SPACE FOR I	ROU	GH WORK		

74.	and the solution is d	roxide (molar mass a iluted up to 100 ml. VB) 1.0 mol dm -3	Wha	t is the molarity of	the re	ittle quantity of water esulting solution? 1.25 mol dm ⁻³
75.	Which of the follow methyl ketone?				yl ca	dmium yields benzyl
	A) Acetone	B) Acetaldehyde	C)	Acetic acid	D)	Acetyl chloride
76.	Which halide of mag A) Chloride	gnesium has highest i B) Bromide		character ? Iodide	D)	Fluoride
77.	The reaction takes p	lace in two steps as				
	i) $NO_2Cl_{(g)} - K_1$	$NO_{2(\sigma)} + Cl_{(\sigma)}$				
	Ψ,	$(g) \xrightarrow{K_2} NO_{2(g)} +$	Cl_2	(o)		
	Identify the reaction		_	(6)		
	A) $NO_2Cl_{(g)}$	B) NO _{2 (g)}	C)	$\text{Cl}_{2(g)}$	D)	Cl (g)
78.	Which of the follow	ing aminoacids is ba	sic i	n nature ?		
	A) Valine	B) Tyrosine	C)	Arginine	D)	Leucine
79.	The relation between is stated by which la		liqui	d at constant tempe	ratur	e and external pressure
	A) Raoult's lawC) van't Hoff Cha	ırles' law	,	van't Hoff Boyle' Henry's law	s law	7
80.	Which among the fo	ollowing phenolic con	mpo	unds is most acidic	in na	ature ?
	A) p-aminophenol			phenol		
	C) m-nitrophenol			p-nitrophenol		
81.	_	ollowing solids is a no	-			
	A) Hydrogen chloC) Water	nde		Sulphur dioxide Carbon dioxide		
82	,	at forms colourless c				
02.	A) Iron $(Z = 26)$	at forms colouriess c	-	Chromium ($Z = 24$	4)	
	C) Vanadium (Z =	= 23)		Scandium ($Z = 21$		
83.	What is the highest $(A) + 1$	oxidation state exhib B) + 3		by group 17 elements + 5	nts?	+ 7
84.	-	ion of first law of them $B) -\Delta U = q_v$		-	-	process is $\Delta U = W$
25	·	sed in commercial mo				
05.	A) Silica	sea in commercial in		Calcium phosphat	-	101.
	· · · · · · · · · · · · · · · · · · ·	minium chloride	-	Cobalt naphthenat		
86.	The rate constant an	d half life of a first or	rder	reaction are related	l to e	ach other as
	0.693	D) t0.603 K	\mathbf{C}	V = 0.602+	D)	v _t _ 1
	κ) $\iota_{1/2} - \overline{K}$	B) $t_{\frac{1}{2}} = 0.693 \mathrm{K}$	C)	$K = 0.093 t_{1/2}$	(U	$\kappa t_{1/2} = \frac{1}{0.693}$

87.	What is the combining ratio of glycerol and	l fatty acids when they co	ombine to form triglyceride?
	A) 3:4 B) 3:2	C) 1:3	D) 1:2
88.	The molecular formula of Wilkinson cat A) Co (CO) ₈ C) [Pt (NH ₃) ₂ Cl ₂]	alyst, used in hydrogena B) (Ph ₃ P) ₃ RhCl D) K [Ag (CN) ₂]	ation of alkenes is
89.	The criterion for a spontaneous process	S	
	A) $\Delta G > 0$ B) $\Delta G < 0$	C) $\Delta G = 0$	D) $\Delta S_{total} < 0$
90.	Brown ring test is used for detection of v	which radical?	
	A) Ferrous B) Nitrite	C) Nitrate	D) Ferric
91.	The reagent used in Wolff-Kishner reduced NH ₂ – NH ₂ and KOH in ethylene B) Zn – Hg/conc.HCl C) NaBH ₄ D) Na – Hg/H ₂ O		
92.	Which of the following is a neutral comp	olex?	
	A) $[Pt (NH_3)_2 Cl_2]$	B) [Co (NH ₃) ₆] Cl ₃	
	C) [Ni (NH ₃) ₆] Cl ₂	D) K_4 [Fe (CN) ₆]	
93.	Identify the compound amongst the folloboiling point. A) Glucose C) Calcium chloride	bwing of which 0.1 M ac B) Sodium chloride D) Ferric chloride	queous solution has highest
94.	What is the reagent used in Etard reaction	on?	
	A) Chromyl chlorideC) SnCl₂ and HCl	B) Ethanoyl chlorideD) Cadmium chloride	
95.	The most abundant noble gas in atmospl	nere is	
	A) Neon B) Argon	C) Xenon	D) Krypton
96.	Identify an extensive property amongst t	he following	
	A) Viscosity B) Heat capacity	C) Density	D) Surface tension
97.	Which of the following carboxylic acids	is a tricarboxylic acid?	•
	A) Oxalic acid B) Citric acid	C) Succinic acid	D) Adipic acid
98.	Average rate of reaction 2 $SO_{2(g)} + O_2$	$(g) \longrightarrow 2 SO_{3(g)}$ is w	vritten as
	A) $\frac{\Delta[SO_2]}{\Delta t}$ B) $-\frac{\Delta[O_2]}{\Delta t}$	C) $\frac{1}{2} \frac{\Delta[SO_2]}{\Delta t}$	D) $\frac{\Delta[SO_3]}{\Delta t}$
99.	What is the amount of work done who combustion at 300 K? (given, $R = 8.31$	en 0.5 mole of methano $(4 \text{ J K}^{-1} \text{ mol}^{-1})$	e, CH _{4 (g)} , is subjected to
			D) + 2494 J
100.	Primary nitroalkanes are obtained in good A) trifluoroperoxyacetic acid C) concentrated nitric acid	B) acidified potassium	

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	-					5	9	13	17	21	26	30	34	38
						0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569						4	8	12	16	20	23	27	31	35
	1					0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	28	32
	1					0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271						3	6	10	13	16	19	23	26	29
						1303	1335	1367	1399	1430	3	6	10	13	16	19	22	25	29
14	1461	1492	1523	1553	1584						3	6	9	12	15	19	22	25	28
	1					1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26
15	1761	1790	1818	1847	1875						3	6	9	11	14	17	20	23	26
	1					1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25
16	2041	2068	2095	2122	2148						3	6	8	11	14	16	19	22	24
						2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	23
						2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	22
18	2553	2577	2601	2625	2648						2	5	7	9	12	14	17	19	21
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	18	21
19	2788	2810	2833	2856	2878						2	4	7	9	11	13	16	18	20
						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	14	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405 eena	6415	6425	1	2	3	4	5	6	7 7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46 47	6628 6721	6637 6730	6646 6739	6656 6749	6665 6758	6675	6684	6693	6702 6794	6712 6803	1	2	3	4	5 5	5	6	7 7	8 8
	6812	6821				6767	6776	6785									6	7	8
48			6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5			
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9871	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4

11

ANTILOGARITHMS

-15-

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
0.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
0.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
0.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
0.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
0.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
0.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
0.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
0.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
0.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
0.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
0.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
0.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
0.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
0.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
0.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
0.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
0.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
0.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
0.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
0.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
0.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
0.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
0.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
0.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
0.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
0.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
0.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
0.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
0.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
0.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
0.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
0.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
0.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
0.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
0.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
0.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
0.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
0.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
0.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
0.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
0.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
0.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
0.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
0.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
0.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
0.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
0.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
0.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6
0.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2.	3	4	4	5	6	6

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
0.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
0.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
0.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
0.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
0.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
0.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
0.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
0.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
0.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
0.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
0.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
0.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
0.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
0.64	4365	4375	4385	4396	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
0.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
0.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
0.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
0.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
0.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
0.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
0.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
0.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5348	1	2	4	5	6	7	9	10	11
0.73	5370 5495	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
	5623	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
0.75	5754	5636 5768	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
0.76	5888	5902	5781 5916	5794 5929	5808 5943	5821 5957	5834 5970	5848 5984	5861 5998	5875 6012	1	3	4	5	7	8	10	11	12 12
0.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
0.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	8	10	11	13
0.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
0.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
0.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
0.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
0.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
0.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
0.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
0.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
0.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	8	11	12	14	16
0.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
0.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
0.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
0.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
0.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
0.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
0.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
0.96	9120	9141	9162	9183	9204	9220	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
0.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
0.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
0.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

